
ICFP Programming Contest 2023
v3

Aymeric Fromherz

Introduction

After a successful stint as painters, the denizens of Lambda land are now turning
to different artistic endeavors, and starting a new career in music. Passionate
about their craft, they wish to make sure that their diverse audience enjoys their
vibe to the greatest extent. However, while the Lambda band consists of talented
musicians, organization is not their strongest suit. Your mission, if you accept
it, will be to place each musician on stage to provide the best possible sound for
attendees.

Timeline

Note that there will be updates to this specification, and more problems will be
released during the contest. This will happen at these specific times:

• 8 hours into the contest (new problems only, no changes to specification)

• 24 hours into the contest (after the lightning division ends)

• 48 hours into the contest

1

Changelog

• Added clarification about validity of musician placements

• Added clarification about blocking sound radius

• Added documentation for update username endpoint

• Added clarification about blocking sound radius

• Fixed typo in indices of score computation for Extension 2

• Added clarification about localization of pillars

• Added scores for sample problems

• July 9 2023, 14:04 UTC. Clarified scoring for Extension 3

• July 10 2023, 06:12 UTC. Added instructions for code submission

2

Problem Specification

The task is to place each musician on stage, to maximize the happiness of all
attendees in the room.

As part of individual problems, you will be given a JSON file containing:

• The topology of the room, including its size, and the dimensions and location
of the stage

• A list of musicians in the band, with the instrument they are playing

• A list of attendees, including their location in the room, and their taste in
each instrument

As part of the task, you will also be given a scoring function to compute the
total enjoyment of each attendee depending on the placement of the band.

Room Topology. The Lambda band will be playing in rectangular rooms;
their size will be specified using two parameters room_height and room_width.
The stage will also be rectangular; its size will be specified using two parameters
stage_height and stage_width. The stage can be situated anywhere in the
room, its position will be specified using the array stage_bottom_left, containing
the x and y coordinates of its bottom-left corner.

Musician Placement. Musicians in the band must be placed in the area de-
limited by the stage. To ensure they have enough room for playing, they must not
have any other musician or an edge of the stage in a circle of radius 10 centered
on them. A placement where a musician is at distance exactly 10 from an edge or
another musician will be considered as valid. Musicians will be specified through
the array musicians. This array will contain the instruments that each musi-
cian is playing, represented as a numeric identifier. Solutions where musicians
are incorrectly placed, or where all musicians have not been placed will not be
counted.

Attendees. The specification of attendees is provided in the array attendees.
Each attendee is represented as a structure containing the following elements:

• Its position, specified using the attributes x and y. Attendees will never be
located on stage.

• Its taste in each instrument, represented as an array tastes. tastes[i]

corresponds to the taste of the attendee in the instrument with identifier i.

3

Problem Solution. Problem solutions must be given as a JSON object with
the attribute placements, consisting of structures with attributes x and y, cor-
responding to the coordinates of each musician. The i-th element of placements
corresponds to the position in the room of the i-th musician specified in the at-
tribute musicians.

Example Problem As an example, here is an input of a sample problem,
containing three musicians and three attendees. The band consists of two different
instruments, with identifiers 0 and 1.

{
"room_width": 2000.0,

"room_height": 5000.0,

"stage_width": 1000.0,

"stage_height": 200.0,

"stage_bottom_left": [500.0, 0.0],

"musicians": [0, 1, 0],

"attendees": [

{ "x": 100.0, "y": 500.0, "tastes": [1000.0, -1000.0

] },
{ "x": 200.0, "y": 1000.0, "tastes": [200.0, 200.0]

},
{ "x": 1100.0, "y": 800.0, "tastes": [800.0, 1500.0]

}
]

}

An example solution would be the following.

{
"placements": [

{"x": 590.0, "y": 10.0 },
{"x": 1100.0, "y": 100.0 },
{"x": 1100.0, "y": 150.0 }

]

}

Scoring Function For a given problem, the scoring function corresponds to
the cumulated happiness of all attendees. The happiness of an attendee is the
sum of the impact of each musician. For an attendee i, we compute the impact
of musician k as follows:

4

We denote as d the distance between the attendee and musician, computed as
d =

√
(attendees[i].x− placements[k].x)2 + (attendees[i].y − placements[k].y)2.

In the general case, the impact of musician k on attendee i is defined as

Ii(k) =

⌈
1, 000, 000 ∗ attendees[i].tastes[musicians[k]]

d2

⌉
However, another musician k′ can block the sound coming from k. We consider

that k′ blocks the sound from k for attendee i if the line from k to i intersects the
circle of radius 5 centered on k′. This boundary is exclusive: we do not consider
the sound as blocked if the intersection consists of one point. If the sound is
blocked, Ii(k) = 0.

The expected score for the sample problems above is 5343.0.

Full Division, Extension 1: Obstacles in the Room

Unfortunately for the Lambda band, not all the rooms they are playing in are
well-arranged. In particular, some of them contain pillars that can block the
sound.

The localization of these pillars will be provided in the problem as an addi-
tional attribute, pillars. We will assume that these pillars always have a circular
shape; each pillar is represented by its center and its radius. Pillars will never
intersect with the stage. An example is

"pillars": [{"center": [500.0, 1000.0], "radius": 5.0},
...]

When the line between a musician k and an attendee i intersects a pillar, we
consider that i cannot hear musician k; the impact of k on i is set to 0: Ii(k) = 0.
The bound is exclusive, if the line intersects in only one point, we will consider
the sounds as not blocked.

Full Division, Extension 2: Playing Together

The Lambda band is very social, and plays better when musicians playing the
same instrument are close to each other. For a given musician i, we define the
closeness factor as follows, where d(i, j) is the distance between musicians i and
j:

q(i) = 1 +
∑

j ̸=i|musicians[i]=musicians[j]

1

d(i, j)

Attendees are happier when the music is better; to integrate the closeness
factor, we modify the total scoring of a problem as follows:

score =
∑

i∈attendees

∑
k∈musicians

⌈q(k) ∗ Ii(k)⌉

5

To avoid impacting problems from the lightning round, this extension will only
be active for new problems added during the full round.

The expected score for the sample problem used in the lightning round is
5357.0.

Full Division, Extension 3: Volume Control

In addition to their placement, the Lambda band also has control over the volume
that each musician is playing at. As part of the solution, you can now specify
an attribute volumes, which corresponds to an array of values between 0 and 10
whose size is the same as the number of musicians.

For example, using the sample problem with three musicians given previously,
a valid solution file would be

{
"placements": ...,

"volumes": [1.0, 5.0, 3.0]

}

The volume a musician plays at impacts how well attendees hear them. In
particular, it changes the total scoring function as follows:

score =
∑

i∈attendees

∑
k∈musicians

⌈volumes[k] ∗ q(k) ∗ Ii(k)⌉

Adding this attribute is optional, if not specified, it will implicitly be assumed
to be an array where all elements are 1.0 (hence having no impact on the total
score). It can be added on all problems, for problems from the lightning round,
q(k) will always be set to 1.0 to preserve the behavior from Extension 2.

Deadlines

As traditional, the contest will have a Lightning Division spanning the first 24
hours. To qualify for the Lightning Division prize, submit your solution by July
8 2023, 12:00pm (noon) UTC. To qualify for the Full Divison prize, submit your
solutions by July 10 2023, 12:00pm (noon) UTC.

In order to qualify for any prizes, your source code must be submitted by the
end of the contest as well. You can do this through the web portal.

Determing the Winner

We will use the same procedure to determine the winner in both the lightning
and full divisions, ranking the teams by cumulative score, computed as the sum

6

of scores for each task.

7

Submission

In addition to the web interface, you can use the following endpoints for your
submissions.

/submission : Get Get submission with ID. You can only get submissions
linked to your account.

Usage: api.icfpcontest.com/submission?submission_id=[submission-

id:string]

Requires: Authorization header set to Bearer <token>. You can find the
token string on your UI dashboard or receive a token via login endpoint.

Returns:

{
"Success": {

"submission": {
"_id": string, // submission id

"problem_id": number,

"user_id": string,

"score": {
"Failure": string | "Success": number //

submission result from judge

},
"submitted_at": string // submission time as

UTC

},
"contents": string // submission contents

} |

"Failure": string // failure message

}

/submission : Post Post submission with contents and problem id.
Usage: api.icfpcontest.com/submission
Requires: Authorization header set to Bearer <token>. You can find the

token string on your UI dashboard or receive a token via login endpoint.
Body

{
"problem_id": u32,

"contents": string // submission contents

}
Returns submission_id as plain tex

8

/submissions: Get Get [limit] number of your past submissions starting
from a given [offset], sorted by submission time. offset=0 indicates you start
from your most recent submission and receive [limit] number of submissions
back. Setting [problem_id] allows you to only receive the submissions for that
specific problem.

Usage:

api.icfpcontest.com/submissions?offset=[offset: u64]&

limit=[limit: i64]

api.icfpcontest.com/submissions?offset=[offset: u64]&

limit=[limit: i64]&problem_id=[problem_id: u32]

Requires: Authorization header set to Bearer <token>. You can find the
token string on your UI dashboard or receive a token via login endpoint.

Returns:

{ "Success" :

{
"_id": string;

"problem_id": number;

"submitted_at": string;

"score": "Processing" | { "Failure": string } |

{ "Success": number };
}[]

}
| { "Failure": string }

/problem: Get Get problems contents with problem id.
Usage: api.icfpcontest.com/problem?problem_id=[problem_id:u32]
Returns:

{
"Success": string // problem definition

}
| {

"Failure": string // error message

}

/problems : Get Get number of problems.
Usage: api.icfpcontest.com/problems
Returns:

9

{
"number_of_problems": number,

}

Secondary Endpoint. cdn.icfpcontest.com/problems/[problem-id].

json :Get Returns the actual json file.
Usage. cdn.icfpcontest.com/problems/[problem-id].json
Returns. Contents of the problem as a json file.

/scoreboard : Get Get the global scoreboard. The scoreboard is updated at
most once a minute. Frozen means scoreboard is frozen at the last updated point,
so you are seeing the snapshot from that moment.

Usage: api.icfpcontest.com/scoreboard
Returns:

{
"frozen": bool,

"scoreboard": { // sorted by scores

"username": string,

"score": number,

}[],
"updated_at": string // date

}

/userboard: Get Get scoreboard for your account. Provides the highest score
for each problem.

Usage: api.icfpcontest.com/userboard
Requires: Authorization header set to Bearer <token>. You can find the

token string on your UI dashboard or receive a token via login endpoint.
Returns:

{
"Success": {

"problems": (number | null)[] // if no

submission to a question, then null. If all

failing, then 0. Otherwise, highest score.

}
}
| {

"Failure": string // failure message

}

10

/register : Post Register your account to the contest.
Usage: api.icfpcontest.com/register
Body:

{
"username": string,

"email": string, // must be a valid email

"password": string

}

Returns:

{
"Success": string // your JWT access token

}
| {

"Failure": string // failure message

}

/login : Post Login with your account
Usage: api.icfpcontest.com/login
Body:

{
"username_or_email": string,

"password": string

}

Returns:

{
"Success": string // your JWT access token

}
| {

"Failure": string // failure message

}

/username/update username : Post Updates the username of the account.
Usage. api.icfpcontest.com/user/update_username
Requires. Authorization header set to Bearer <token>. You can find the

token string on your UI dashboard or receive a token via login endpoint.
Body.

11

{
"username": string

}

Returns.

{
"Success": string

}
| {

"Failure": string

}

Post Code Adds your code into our cloud storage.
Usage. api.icfpcontest.com/submit_code :Post

Requires. Authorization header with valid JWT token. Content-type header
with multipart/form-data

Body. form-data with key: code, value: zipped version of your code.
Returns. "Successfully uploaded code!" or Error String.

Check Code Checks the cloud storage for your MD5 hash.
Usage. api.icfpcontest.com/submit_code :Get

Requires. Authorization header with valid JWT token.
Returns. "\"<md5-hash-of-your-upload>\""

12

